Матрицы. Вступление и оглавление.История Впервые матрицы упоминались ещё в древнем Китае, называясь тогда «волшебным квадратом». Основным применением матриц было решение линейных уравнений. Также волшебные квадраты были известны чуть позднее у арабских математиков, примерно тогда появился принцип сложения матриц. После развития теории определителей в конце 17-го века, Габриэль Крамер начал разрабатывать свою теорию в 18-м столетии и опубликовал «правило Крамера» в 1751 году. Примерно в этом же промежутке времени появился «метод Гаусса». Теория матриц начала своё существование в середине XIX века в работах Уильяма Гамильтона и Артура Кэли. Фундаментальные результаты в теории матриц принадлежат Карлу Вейерштрассу, Фердинанду Георгу Фробениусу и Мари Энмону Камиль Жордану. Современное название "матрица" было введено Джеймсом Сильвестром в 1850 году. Применение матриц Матрицы широко применяются в математике и физике для компактной записи и решения систем линейных алгебраических уравнений и систем дифференциальных уравнений. При этом количество строк матрицы соответствует количеству уравнений системы, а количество столбцов — количеству неизвестных величин. Матричный аппарат позволяет существенно упростить решение СЛАУ сведя его к операциям над матрицами. Матрицы. вступление и оглавлениеМатрицы: определение и основные понятия.Сведение системы линейных уравнений к матрице.Виды матрицУмножение матрицы на число.Сложение и вычитание матриц.Умножение матриц.Транспонирование матрицы.Элементарные преобразования матрицы.Определитель матрицы.Минор и алгебраическое дополнение матрицы.Обратная матрица.Линейно зависимые и независимые строки.Ранг матрицы.Показать все онлайн калькуляторы Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список! |