Минор и алгебраическое дополнение матрицы.
Определение. Минором M ij к элементу aij определителя n-го порядка называется определитель ( n - 1)-го порядка, полученный из исходного определителя вычеркиванием i-той строки и j-того столбца.
Пример 1. Найти миноры матрицы A
A = |
| 5 | 7 | 1 | |
-4 | 1 | 0 |
2 | 0 | 3 |
|
Решение:
M11 = |
|
= 1·3 - 0·0 = 3 - 0 = 3 |
M12 = |
|
= -4·3 - 0·2 = -12 -0 = -12 |
M13 = |
|
= -4·0 - 1·2 = 0 - 2 = -2 |
M21 = |
|
= 7·3 - 1·0 = 21 - 0 = 21 |
M22 = |
|
= 5·3 - 1·2 = 15 - 2 = 13 |
M23 = |
|
= 5·0 - 7·2 = 0 - 14 = -14 |
M31 = |
|
= 7·0 - 1·1 = 0 - 1 = -1 |
M32 = |
|
= 5·0 - 1·(-4) = 0 + 4 = 4 |
M33 = |
|
= 5·1 - 7·(-4) = 5 + 28 = 33 |
Определение. Алгебраическим дополнением A ij к элементу aij определителя n-го порядка называется число
Aij = (-1)i + j · Mij
Свойства алгебраического дополнения матрицы
Пример 2. Найти алгебраические дополнения матрицы A
A = |
| 5 | 7 | 1 | |
-4 | 1 | 0 |
2 | 0 | 3 |
|
Решение:
A11 = (-1)1 + 1·M11 = (-1)2· |
|
= 1·3 - 0·0 = 3 - 0 = 3 |
A12 = (-1)1 + 2·M12 = (-1)3· |
|
= -(-4·3 - 0·2) = -(-12 -0) = 12 |
A13 = (-1)1 + 3·M13 = (-1)4· |
|
= -4·0 - 1·2 = 0 - 2 = -2 |
A21 = (-1)2 + 1·M21 = (-1)3· |
|
= -(7·3 - 1·0) = -(21 - 0) = -21 |
A22 = (-1)2 + 2·M22 = (-1)4· |
|
= 5·3 - 1·2 = 15 - 2 = 13 |
A23 = (-1)2 + 3·M23 = (-1)5· |
|
= -(5·0 - 7·2) = -(0 - 14) = 14 |
A31 = (-1)3 + 1·M31 = (-1)4· |
|
= 7·0 - 1·1 = 0 - 1 = -1 |
A32 = (-1)3 + 2·M32 = (-1)5· |
|
= -(5·0 - 1·(-4)) = -(0 + 4) = -4 |
A33 = (-1)3 + 3·M33 = (-1)6· |
|
= 5·1 - 7·(-4) = 5 + 28 = 33 |
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список! |