Смешанное произведение векторов.Навигация по странице:
Определение. Смешанное произведение векторов — скалярное произведение вектора a на векторное произведение векторов b и c.
Формулы вычисления смешанного произведения векторовСмешанное произведение векторов равно определителю матрицы, составленной из этих векторов. Смешанное произведение векторов a = {ax; ay; az}, b = {bx; by; bz} и c = {cx; cy; cz} в декартовой системе координат можно вычислить, используя следующую формулу:
Свойства смешанного произведения векторов
Примеры задач на вычисления смешанного произведения векторовПример 1. Найти смешанное произведение векторов a = {1; 2; 3}, b = {1; 1; 1}, c = {1; 2; 1}.
Решение:
= 1·1·1 + 1·1·2 + 1·2·3 - 1·1·3 - 1·1·2 - 1·1·2 = 1 + 2 + 6 - 3 - 2 - 2 = 2 Пример 2.
Найти объем пирамиды построенной на векторах a = {1; 2; 3}, b = {1; -1; 1}, c = {2; 0; -1}.
Решение: Найдем смешанное произведение этих векторов:
= 1·(-1)·(-1) + 2·1·2 + 3·1·0 - 3·(-1)·2 - 2·1·(-1) - 1·1·0 = = 1 + 4 + 0 + 6 + 2 - 0 = 13 Найдем объем пирамиды воспользовавшись свойствами:
Вектора
Вектор: определение и основные понятия
Определение координат вектора заданного координатами его начальной и конечной точки
Модуль вектора. Длина вектора
Направляющие косинусы вектора
Равенство векторов
Ортогональность векторов
Коллинеарность векторов
Компланарность векторов
Угол между векторами
Проекция вектора
Сложение и вычитание векторов
Умножение вектора на число
Скалярное произведение векторов
Векторное произведение векторов
Смешанное произведение векторов
Линейно зависимые и линейно независимые вектора
Разложение вектора по базису
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список! |