Векторное произведение векторов.Навигация по странице:
Определение. Векторным произведением вектора a на вектор b называется вектор c, длина которого численно равна площади параллелограмма построенного на векторах a и b, перпендикулярный к плоскости этих векторов и направленный так, чтоб наименьшее вращение от a к b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора c (рис. 1).
Формулы вычисления векторного произведения векторовВекторное произведение двух векторов a = {ax; ay; az} и b = {bx; by; bz} в декартовой системе координат - это вектор, значение которого можно вычислить, используя следующие формулы:
a × b = {aybz - azby; azbx - axbz; axby - aybx}
Свойства векторного произведения векторов
Примеры задач на вычисления векторного произведения векторовПример 1. Найти векторное произведение векторов a = {1; 2; 3} и b = {2; 1; -2}.
Решение:
= i(2 · (-2) - 3 · 1) - j(1 · (-2) - 2 · 3) + k(1 · 1 - 2 · 2) = = i(-4 - 3) - j(-2 - 6) + k(1 - 4) = -7i + 8j - 3k = {-7; 8; -3}
Пример 2.
Найти площадь треугольника образованного векторами a = {-1; 2; -2} и b = {2; 1; -1}.
Решение: Найдем векторное произведение этих векторов:
= i(2 · (-1) - (-2) · 1) - j((-1) · (-1) - (-2) · 2) + k((-1) · 1 - 2 · 2) = = i(-2 + 2) - j(1 + 4) + k(-1 - 4) = -5j - 5k = {0; -5; -5} Из свойств векторного произведения:
Ответ: SΔ = 2.5√2.
Вектора
Вектор: определение и основные понятия
Определение координат вектора заданного координатами его начальной и конечной точки
Модуль вектора. Длина вектора
Направляющие косинусы вектора
Равенство векторов
Ортогональность векторов
Коллинеарность векторов
Компланарность векторов
Угол между векторами
Проекция вектора
Сложение и вычитание векторов
Умножение вектора на число
Скалярное произведение векторов
Векторное произведение векторов
Смешанное произведение векторов
Линейно зависимые и линейно независимые вектора
Разложение вектора по базису
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список! |