OnlineMSchool
Изучение математики онлайн.
Изучайте математику с нами и убедитесь: "Математика - это просто!"

Параллелограмм. Формулы, признаки и свойства параллелограмма

Определение.
Параллелограмм - это четырехугольник у которого противоположные стороны попарно параллельны (лежат на параллельных прямых).
Параллелограммы отличаются между собой как размером прилегающих сторон, так и углами, однако противоположные углы одинаковые.
Изображение параллелограмма с обозначениями Изображение параллелограмма с обозначениями
Рис.1 Рис.2

Признаки параллелограмма

Четырехугольник ABCD будет параллелограммом, если выполняется хотя бы одно из следующих условий:
1. Четырехугольник имеет две пары параллельных сторон:

AB||CD, BC||AD

2. Четырехугольник имеет пару параллельных и равных сторон:

AB||CD, AB = CD (или BC||AD, BC = AD)

3. В четырехугольнике противоположные стороны попарно равны:

AB = CD, BC = AD

4. В четырехугольнике противоположные углы попарно равны:

∠DAB = ∠BCD, ∠ABC = ∠CDA

5. В четырехугольнике диагонали точкой пересечения делятся пополам:

AO = OC, BO = OD

6. Сумма углов четырехугольника прилегающих к любой стороне равна 180°:

∠ABC + ∠BCD = ∠BCD + ∠CDA = ∠CDA + ∠DAB = ∠DAB + ∠DAB = 180°

7. В четырехугольнике сумма квадратов диагоналей равна сумме квадратов его сторон:

AC2 + BD2 = AB2 + BC2 + CD2 + AD2


Основные свойства параллелограмма

Квадрат, прямоугольник и ромб - есть параллелограммом.
1. Противоположные стороны параллелограмма имеют одинаковую длину:

AB = CD, BC = AD

2. Противоположные стороны параллелограмма параллельны:

AB||CD,   BC||AD

3. Противоположные углы параллелограмма одинаковые:

∠ABC = ∠CDA, ∠BCD = ∠DAB

4. Сумма углов параллелограмма равна 360°:

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

5. Сумма углов параллелограмма прилегающих к любой стороне равна 180°:

∠ABC + ∠BCD = ∠BCD + ∠CDA = ∠CDA + ∠DAB = ∠DAB + ∠DAB = 180°

6. Каждая диагональ делит параллелограмма на два равных треугольника
7. Две диагональ делят параллелограмм на две пары равных треугольников
8. Диагонали параллелограмма пересекаются и точкой пересечения делят друг друга пополам:

AO = CO =  d1
2
BO = DO =  d2
2
9. Точка пересечения диагоналей называется центром симметрии параллелограмма
10. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон:

AC2 + BD2 = 2AB2 + 2BC2

11. Биссектрисы противоположных углов параллелограмма всегда параллельны
12. Биссектрисы соседних углов параллелограмма всегда пересекаются под прямым углом (90°)

Стороны параллелограмма

Формулы определения длин сторон параллелограмма:

1. Формула сторон параллелограмма через диагонали и угол между ними:

a = d12 + d22 - 2d1d2·cosγ = d12 + d22 + 2d1d2·cosδ
22
b = d12 + d22 + 2d1d2·cosγ = d12 + d22 - 2d1d2·cosδ
22
2. Формула сторон параллелограмма через диагонали и другую сторону:

a = 2d12 + 2d22 - 4b2
2
b = 2d12 + 2d22 - 4a2
2
3. Формула сторон параллелограмма через высоту и синус угла:
a = hb
sin α
b = ha
sin α
4. Формула сторон параллелограмма через площадь и высоту:
a = S
ha
b = S
hb

Диагонали параллелограмма

Определение.
Диагональю параллелограмма называется любой отрезок соединяющий две вершины противоположных углов параллелограмма.
Параллелограмм имеет две диагонали - длинную d1, и короткую - d2

Формулы определения длины диагонали параллелограмма:

1. Формулы диагоналей параллелограмма через стороны и косинус угла β (по теореме косинусов)

d1 = √a2 + b2 - 2ab·cosβ

d2 = √a2 + b2 + 2ab·cosβ

2. Формулы диагоналей параллелограмма через стороны и косинус угла α (по теореме косинусов)

d1 = √a2 + b2 + 2ab·cosα

d2 = √a2 + b2 - 2ab·cosα

3. Формула диагонали параллелограмма через две стороны и известную другую диагональ:

d1 = √2a2 + 2b2 - d22

d2 = √2a2 + 2b2 - d12

4. Формула диагонали параллелограмма через площадь, известную диагональ и угол между диагоналями:

d1 = 2S = 2S
d2·sinγd2·sinδ
d2 = 2S = 2S
d1·sinγd1·sinδ

Периметр параллелограмма

Определение.
Периметром параллелограмма называется сумма длин всех сторон параллелограмма.

Формулы определения длины периметра параллелограмма:

1. Формула периметра параллелограмма через стороны параллелограмма:

P = 2a + 2b = 2(a + b)

2. Формула периметра параллелограмма через одну сторону и две диагонали:

P = 2a + √2d12 + 2d22 - 4a2

P = 2b + √2d12 + 2d22 - 4b2

3. Формула периметра параллелограмма через одну сторону, высоту и синус угла:
P = 2(b + hb)
sin α
P = 2(a + ha)
sin α

Площадь параллелограмма

Определение.
Площадью параллелограмма называется пространство ограниченный сторонами параллелограмма, т.е. в пределах периметра параллелограмма.

Формулы определения площади параллелограмма:

1. Формула площади параллелограмма через сторону и высоту, проведенную к этой стороне:

S = a · ha
S = b · hb

2. Формула площади параллелограмма через две стороны и синус угла между ними:

S = ab sinα

S = ab sinβ

3. Формула площади параллелограмма через две диагонали и синус угла между ними:

S = 1d1d2 sin γ
2
S = 1d1d2 sin δ
2

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!